Litvek - онлайн библиотека >> Максим Андреевич Конопленко >> Экология и защита природы и др. >> Игры климата. Шанс на спасение >> страница 41
Архаическая Греция и Ближний Восток. – М.: Наука. Главная редакция восточной литературы, 1990. – 271 с. [73] Яншина О.В. Понятие «неолит» и археология Восточной Азии // Российский археологический ежегодник. – 2014. – № 4. – С. 125–151. [74] Ясперс К. Смысл и назначение истории. – М.: Полиздат, 1991, – 528 с. [75] Allentoft M.E. et al. Population genomics of Bronze Age Eurasia // Nature.  – 2015. – V. 522. – P. 167–172. [76] Baillie M. Do Irish bog oaks date the Shang dynasty? // Current archaeology. – 1989. – V. 10. – P. 310–313. [77] Barton L., Shirar S., Jordan J.W. Holocene Human Occupation of the Central Alaska Peninsula // Radiocarbon. – 2018. –V. 60, No 2. – P. 367–382. [78] Bond G. et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates // Science. – 1997. – V. 278. – P. 1257–1266. [79] Bond G. et al. Persistent solar influence on North Atlantic climate during the Holocene // Science. – 2001. – V. 294. – P. 2130–2136. [80] Gabriel J. Bowen. Palaeoclimate: When the world turned cold // Nature. – 2007. – V. 445. – P. 607–608. [81] Burgan M. Empire of the Mongols, Revised Edition (Great Empires of the Past). – New York: Chelsea House, 2009. – 160 p. [82] Büntgen U., Di Cosmo N. Climatic and environmental aspects of the Mongol withdrawal from Hungary in 1242 CE // Scientific Reports. – 2016. – V. 6. – P. 1–9. [83] Büntgen U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD // Nature Geoscience. – 2016. – V. 9. – P. 231–236. [84] Coggiola O. História do Capitalismo – Das Origensaté a I Guerra Mundial. – São Paulo, 2016. – 963 p. [85] Crowe S.A. et al. Atmospheric oxygenation three billion years ago // Nature. – 2013. – V. 501. – P. 535–538. [86] de Menocal P.B. Cultural Responses to Climate Change During the Late Holocene // Science. – 2001. –V. 292. – P. 667–673. [87] Dupont-Nivet G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition // Nature. – 2007. –V. 445. – P. 635–638. [88] Eiríksson J., Knudsen K.L., Haflidason H., Heinemeier J. Chronology of late Holocene climatic events in the northern North Atlantic based on AMS 14C dates and tephra markers from the volcano Hekla, Iceland // Journal of Quaternary Science. – 2000. –V. 15, No 6. – P. 573–580. [89] Farnocchia D., Chesley S.R. Assessment of the 2880 impact threat from Asteroid (29075) 1950 DA // Icarus. – 2014. –V. 229. – P. 321–327. [90] Fei J., Zhang D.D., Lee H.F. 1600 AD Huaynaputina Eruption (Peru), Abrupt Cooling, and Epidemics in China and Korea // Advances in Meteorology. – 2016. – V. 15. – P. 1–12. [91] Ford C.T. An Integrated Phylogeographic Analysis of the Bantu Migration. PhD dissertation. The University of North Carolina at Charlotte, United States, North Carolina, 2018. [92] Friedrich W.L. et al. Santorini eruption radiocarbon dated to 1627-1600 B.C. // Science. – 2006. –V. 312, No 5773. – P. 548. [93] Golovanova L.V. et al. Significance of Ecological Factors in the Middle to Upper Paleolithic Transition // Current Anthropology. – 2010. – V. 51. – P. 655–691. [94] Goldblatt C. et al. Nitrogen-enhanced greenhouse warming on early Earth // Nature Geoscience. – 2009. – V. 2. – P. 891–896. [95] Guillemot T. et al. Impact of Holocene climate variability on lacustrine records and human settlements in South Greenland // Climate of the Past. Discussions.  – 2015. – V. 11. – P. 5401–5438. [96] Haak W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe // Nature. – 2015. – V. 522, No 7555. – P. 207–211. [97] Hoffman P.F., Schrag D.P. Snowball earth. Sci Am // Scientific American. – 2000. – V. 282, No 1. – P. 68–75. [98] Jalali B., Sicre M.-A., Bassetti M.-A., Kallel N. Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions) // Climate of the Past. – 2016. – V. 12. – P. 91–101. [99] Kaniewski D. Late second–early first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the Eastern Mediterranean // Quaternary Research. – 2010. – V. 74. – P. 207–215. [100] Keller M. et al. Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750) // PNAS. – 2019. – V. 116, No 25. – P. 12363–12372. [101] Knapp A.B., Manning S.W. Crisis in Context: The End of the Late Bronze Age in the Eastern Mediterranean // American Journal of Archaeology. – 2016. – V. 120, No 1. – P. 99–149. [102] Knudsen M., Riisager P. Magnetisk klimaforskning – påvirker Jordens magnetfelt klimaet // GeologiskNyt. – 2009. – V. 5. – P. 4–8. [103] Larsen L.B. et al. New ice core evidence for a volcanic cause of the A.D. 536 dust veil // Geophysical Research Letters. – 2008. – V. 35, No 4. [104] Lee H.F., Pei Q., Zhang D.D., Choi K.P.K. Quantifying the Intra-Regional Precipitation Variability in Northwestern China over the Past 1,400 Years // Plos One. – 2015. – V. 10, No 7, article no. E0131693 [105] Lee H.F., Zhang D.D., Pei Q. Reconstruction of the geographic extent of drought anomalies in northwestern China over the last 539 years and its teleconnection with the Pacific Ocean // The Holocene. – 2015. – P. 1–14. [106] Madden T.F. Crusades. The Illustrated History. – Ann Arbor: The University of Michigan Press, 2004. – 224 p. [107] Mayewski P.A. et al. Holocene climate variability // Quaternary Research.  – 2014. – V. 62, No 3. – P. 243–255. [108] McConnell J.R. et al. Extreme climate after massive eruption of Alaska’s Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom // PNAS. – 2020. – V. 117, No 27. – P. 15443–14449. [109] McCormick M. et al. Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence // Journal of Interdisciplinary History. – 2012. – V. 43, No 2. – P. 169–220. [110] Morrill C. et al. Proxy benchmarks for intercomparison of 8.2 ka simulations // Climate of the Past. – 2013. – V. 9. – P. 423–432. [111] O’Keefe J. The terminal Eocene event: formation of a ring system around the Earth? // Nature. – 1980. – V. 285. – P. 309–311. [112] Pakendorf B., Bostoen K., de Filippo C. Molecular Perspectives on the Bantu Expansion: A Synthesis // Language Dynamics and Change. – 2011. – V. 1. – P. 50–88. [113] Panova N.K., Antipina T.G. Late Glacial and Holocene environmental history on the eastern slope of the Middle Ural Mountains, Russia // Quaternary International. – 2016.– V. 420, No 28. – P. 76–89. [114] Peyron O. Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece) // The Holocene. – 2011. – V. 21, No 1. – P. 131–146. [115] Schaller M.F. et al. Impact ejecta at the Paleocene-Eocene boundary // Science. – 2016. – V. 354, No 6309. – P. 225–229. [116] Schmidt G.A. et al. General circulation modelling of Holocene climate variability // Quaternary Science Reviews. – 2004. – V. 23. – P. 2167–2181. [117] Sigl M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years // Nature. – 2015. – V. 523, No 7562. – P. 543–549. [118] Staubwasser M., Sirocko F., Grootes P.M., Segl M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability // Geophysical Research Letters. – 2003. – V. 30, No 8. – P. 7/1–7/4. [119] Stegemann E.W., Stegemann W. Historia social del cristianismo primitivo: los inicios en el judaísmo y los comunidades cristianas en el mundo mediterráneo. – Estella: Editorial Verbo Divino, 2001. [120] Vogel J.S., Cornell W., Nelson D.E., Southon J.R. Vesuvius/Avellino, one possible source of seventeenth century BC climatic disturbances // Nature. – 1990. – V. 344. – P. 534–537. [121] Usoskin I.G., Solanki S.K., Kovaltsov G.A. Grand minima and maxima of solar activity: new observational constraints // Astronomy & Astrophysics. – 2007. – V. 471. – P. 301–309. [122] Wanner H., Mercolli L., Grosjean M., Ritz S.P. Holocene climate variability and change; a data-based review // Journal of the Geological Society. – 2015. – V. 172. – P. 254–263. [123] Weiss H. Global megadrought, societal collapse and resilience at 4.2-3.9 ka BP across the Mediterranean and west Asia // Pages magazine. – 2016. – V. 24, No 2. – P. 62–63. [124] Wenxiang W. Possible role of the ‘’Holocene Event 3’’ on the collapse of Neolithic Cultures around the Central Plain of China // Quaternary International. – 2004. – V. 117, No 1. – P. 153–166. [125] Westerhold T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years // Science. – 2020. – V. 369, No 6509. – P. 1383–1387. [126] Zanazzi A., Kohn M.J., MacFadden B.J., Terry D.O. Large temperature drop across the Eocene–Oligocene transition in central North America // Nature. – 2007.  – V. 445. – P. 639–642. [127] Zhang D.D., Zhang J., Lee H.F., He Y-q. Climate Change and War Frequency in Eastern China over the Last Millennium // Human Ecology. – 2007. – V. 35. – P. 403–414. [128] Zhang D.D. et al. Climate change and large-scale human population collapses in the pre-industrial era // Global Ecology and Biogeography. – 2011. – V. 20, No 4. – P. 520–531. [129] Zvelebil M. Innovating hunter-gatherers: the Mesolithic in the Baltic // Mesolithic Europe / edited by Bailey G., Spikins P. – Cambridge: Cambridge University Press, 2008. − P. 18−59.



Игры климата. Шанс на спасение. Иллюстрация № 41