Litvek - онлайн библиотека >> Давид Бланко Ласерна >> Физика и др. >> Гюйгенс. Волновая теория света. В погоне за лучом >> страница 6
науки. Несмотря на то что геометрические открытия Гюйгенса не оставили заметного следа в истории математики, благодаря им он заслужил восхищение современников, а также овладел инструментами, позволявшими понять механизм природы.

Гюйгенс разделял интерес Архимеда к механике. На страницах трудов обоих соседствуют треугольники, весы, параболы и центры притяжения, так что трудно сказать, где заканчивается физика и начинается математика. В нидерландском языке есть слово vernufteling, как нельзя более точно описывающее Гюйгенса. Оно обозначает одновременно отличные интеллектуальные способности и склонность к ручному труду. Ученый не создал грандиозных систем, как Декарт или Ньютон, его больше интересовали отдельные явления, которые он разбирал так, словно имел дело с шестеренками сложного механизма, только вместо гаечных ключей и отверток использовал алгебру и геометрию. Все увлечения Гюйгенса приводили к изобретениям (таким как телескопы и часы), рождавшимся из почти чудесного объединения физики, математики и тонкого ручного труда. Ученый был любопытным примером стремления к чистой абстракции и одновременно с этим — ремесленного прагматизма. Это сочетание очень рано проявилось в его работе в области оптики. Свойства линз со временем стали главным научным интересом Гюйгенса, которому он отдавался на протяжении всей жизни, в итоге усовершенствовав конструкцию телескопа, а также сделав удивительные астрономические открытия. А самое главное — благодаря этому интересу ученый совершил одно из глубочайших исследований природы света. Конец истории имел для Гюйгенса горьковатый привкус: в соперничестве с Ньютоном они находились в разных весовых категориях, но в самом начале научной дуэли, когда Христиан дошел до пределов Солнечной системы, он, без сомнения, одержал победу.


Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 6 РИС. 1

Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 7 РИС. 2

Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 8 РИС.З


ЛАБИРИНТЫ СВЕТА
В конце октября 1652 года Гюйгенс признавался ван Схотену: «Я полностью поглощен диоптрикой». Этим термином в 1611 году Кеплер обозначил область, математически исследующую траектории луча света при прохождении через группу линз. Непротиворечивая теория, способная объяснить все явления, связанные с взаимодействием света и материи, появилась только в XX веке. Но для создания оптических инструментов достаточно воспользоваться приближением геометрической оптики, в рамках которого свет рассматривается как пучок прямых линий. Ниже мы постараемся объяснить, в каком состоянии находилась диоптрика до того, как ею занялся Гюйгенс.

Свет преломляется или отклоняется, пересекая границу двух сред, которые в состоянии пропустить его. При этом часть света отражается — этот аспект мы не будем принимать во внимание, но он ограничивает количество линз, которые можно разместить в одной оптической системе. Чем больше стекол должен пересечь свет, тем больше его потеряется по пути и тем слабее будет изображение.

Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 9 РИС. 4

Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 10 РИС. 5


Явление рефракции можно наблюдать в любой прозрачной среде, когда солнечные лучи проходят через воду, воздух и стекло. Угол отклонения зависит от каждой пары сред. Так, если луч проходит от стекла к воздуху (см. рисунок 1), угол будет больше (β > а), а если в обратном направлении, от воздуха к стеклу (см. рисунок 2), то меньше.

Проходя через прозрачное тело, лучи света дважды пересекают границу сред, то есть дважды преломляются. Если эти границы являются плоскими и параллельными друг другу, при отклонении лучи смещаются в сторону (d), как в случае с оконным стеклом (см. рисунок 3).

Если граница не плоская, то лучи будут расходиться беспорядочно, в разных направлениях, в зависимости от точки пересечения (см. рисунки 4 и 5). Эти отклонения можно организовать, придав лучам определенное направление, и мы получим некоторое изображение.

Примем, что окружающие нас предметы испускают видимый свет. В некотором смысле так и есть, хотя это условное испускание, являющееся результатом реакции на свет, который на них падает (например, от Солнца или лампы). Атомы, из которых состоит материя, взаимодействуют с фотонами — частицами света, — доходящими до поверхности, и в ходе этого процесса высвобождают новые фотоны.


Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 11 РИС. 6

Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 12 РИС. 7

Гюйгенс. Волновая теория света. В погоне за лучом. Иллюстрация № 13 РИС. 8


Качество света, испускаемого таким образом, зависит от двух факторов: от того, как свет дошел до материи, и от самой ее структуры (какие атомы ее образуют и как они организованы в пространстве). Осветить яблоко солнечными лучами или красным искусственным светом — это не одно и то же, как не одно и то же — осветить яблоко, хрустальную пепельницу или зеркало. Мы можем положить под лампу книгу или апельсин. Оба предмета получат одинаковый свет от этого источника, но будут взаимодействовать с ним по-разному и отражать разные световые лучи. Эти различия дают нам информацию о том, на какой именно предмет мы смотрим. Если нам нужно изучить процесс образования изображений, то мы должны исходить из видимого света, отраженного телами.

Рассмотрим пример с синим карандашом на рисунке 6 (на предыдущей странице). С каждой точки его поверхности в разных направлениях исходят световые лучи. В них содержатся данные о форме и фактуре карандаша. Лучи, исходящие из точки А, взаимодействуют с синим грифелем, который поглощает зеленый и красный цвета. Лучи, исходящие из С, взаимодействуют со слоем зеленой краски, которая поглощает красный и синий. Наконец, лучи, исходящие из В, взаимодействуют с красной краской, которая поглощает синий и зеленый. На все точки карандаша попал одинаковый свет, но лучи, отраженные этими точками, различаются, и эти различия дают информацию о точках. Обычно эти лучи рассеиваются в пространстве. Если мы поставим перед карандашом экран L, на