Litvek - онлайн библиотека >> Владимир Георгиевич Сурдин >> Научная литература >> Динамика звёздных систем >> страница 2
единиц, в которых многие константы, в том числе и G, можно полагать равными единице и забывать про них.

Обратите внимание, как коротка запись числа G — всего четыре значащих цифры; другие физические константы содержат по 8—10, а порой и 12 цифр. Почему же именно значение G измерено с такой низкой точностью? А потому, что гравитация — слабая сила, менее других проявляющая себя в лабораторных экспериментах. Очень трудно

определить притяжение двух тел с аккуратно измеренной массой. Если два большущих слона (М1 = М2 = 4 т) стоят в лаборатории, тесно прижавшись друг к другу (R= 1 м), то их взаимное гравитационное притяжение составляет всего около 0,1 г. А вот если бы один слон состоял только из протонов, а другой — только из электронов, то они притягивались бы с силой порядка 1030 т! К счастью, все слоны, планеты и звёзды состоят практически из равного количества протонов и электронов, электрическое взаимодействие которых уравновешивается. Зато гравитационное взаимодействие всех частиц — протонов, нейтронов и электронов — суммируется, поскольку в природе нет гравитационных зарядов разного знака. Поэтому крайне слабая сила всемирного тяготения, почти незаметная между лабораторными телами, является доминирующей для крупных космических тел.

Итак, взаимодействие материальных точек описывается очень простым законом. Для математика этого было бы достаточно, но физик и астроном сразу вспоминают, что реальные тела — это ведь не точки, а протяжённые объекты. Значит, производя расчёты, придётся иметь дело с суммированием или с интегрированием, т. е. с вычислением суммы всех сил, действующих на интересующий нас объект со стороны всех прочих объектов Вселенной. Это задача крайне сложная: представьте себе, что слон притягивает мышонка, и нам предстоит просуммировать все силы, действующие на мышонка со стороны каждой точки хобота, ушей, ног, хвоста и прочих органов слона — со стороны миллионов частей, каждую из которых можно уподобить материальной точке... Сегодня мы можем сказать: что в этом особенного? Мысленно разобьём слона на миллион частей и просуммируем силы от единицы до миллиона. Настольный компьютер сделает это за минуту, поскольку суммировать придётся простенькие члены. Но во времена Ньютона не было компьютеров, и любое суммирование или то, что мы теперь называем интегрированием по объёму, было чрезвычайно сложной операцией, ведь её приходилось выполнять пером на бумаге. И Ньютон не продвинулся бы далеко в исследовании Вселенной, если бы не две замечательные теоремы, которые ему удалось доказать.

I Теорема 1. Сферическое тело (тонкая сферическая оболочка) постоянной плотности притягивает любую точку, находящуюся вне его, так, как будто вся масса тела сосредоточена в его центре.

Эта изумительная теорема дала возможность небесным механикам — людям, которые занимаются расчётом движения планет и космических зондов, а также звёзд и галактик, — свести большинство задач о взаимодействии космических тел к задаче о притяжении двух точек. Дело в том, что почти все небесные тела, за редким исключением, можно уподобить последовательности вложенных друг в друга сфер, каждая из которых имеет постоянную плотность (которая обычно меняется лишь от центра к периферии). Например, у нашей Земли форма почти шарообразная, плотность растёт по направлению к центру, однако, разбив её на бесконечное количество сферических слоёв, вы убедитесь, что каждый из них притягивает внешнюю точку так, как будто вся масса сосредоточена в центре. Поэтому никакого суммирования или интегрирования не нужно.

Теорема 2. Если точку поместить внутри однородной сферы (причём в любом месте, а не только в центре), то она не ощутит притяжения сферы, поскольку силы, действующие на неё со стороны всех элементарных частей этой сферы, в точности уравновесятся.

Эта теорема очень помогла тем специалистам, которые изучают недра небесных тел: стало возможным решать задачи, мысленно поместив наблюдателя внутрь планеты и не заботясь о тех слоях вещества, которые находятся снаружи от него, поскольку их суммарное притяжение у сферической планеты в точности равно нулю.

Таким образом, снаружи сферы вы чувствуете, будто вас притягивает точка, а внутри сферы — вообще невесомость. Эти замечательные теоремы позволили даже во времена Ньютона, при полном отсутствии вычислительной техники, чрезвычайно точно решать интереснейшие задачи: о строении планет (в частности Земли), об их взаимном притяжении и движении в пространстве.


Движение двух точек под действием ВЗАИМНОГО ГРАВИТАЦИОННОГО ПРИТЯЖЕНИЯ

Ньютон решил задачу о том, как движутся две материальные точки, взаимно притягивающие друг друга, например, планета и её спутник. Вы, конечно, знаете решение этой задачи: под действием взаимного притяжения каждое из тел обращается по эллиптической орбите вокруг общего центра масс, лежащего в фокусах эллипсов. Орбиты тел подобны, но имеют разный размер, обратно пропорциональный массам тел. Если из инерциальной системы отсчёта, связанной с центром масс, перейти в неинерциальную, связанную с одним из тел, то второе обращается вокруг него также по эллиптической орбите (найдите сами её размеры).

Решение Ньютона, полученное в конце XVII века, подтвердило на основании новой по тем временам физики эмпирические открытия, сделанные Кеплером ещё в начале того же века: по результатам многолетних наблюдений, в основном проделанных датским астрономом Тихо Браге, Кеплер обнаружил, что планеты обращаются вокруг

Солнца по эллипсам с переменной скоростью, двигаясь так, что радиус-вектор (прямая, соединяющая планету и Солнце) за равные отрезки времени заметает равные площади, и что квадраты периодов обращения двух планет относятся как кубы больших полуосей их эллиптических орбит [4, 5]. Ньютон, используя сформулированные им законы механики и предположение о гравитационной силе, обратной квадрату расстояния, не только объяснил найденные Кеплером закономерности движения планет, но и доказал, что эллипс — лишь частный случай любого конического сечения (им может быть также парабола, гипербола, окружность или прямая), по которому происходит движение двух гравитационно взаимодействующих тел (рис. 1). Разумеется, если речь идёт о длительном движении связанных, т. е. не улетающих далеко друг от друга тел, то это эллипс или его частный случай — окружность (а почему не отрезок прямой?).

Динамика звёздных систем. Иллюстрация № 3

Рис. 1. Сечения конуса плоскостью представляют все возможные траектории движения в задаче двух тел: 1)