Litvek - онлайн библиотека >> Альберт Анатольевич Рывкин и др. >> Математика >> Сборник задач по математике с решениями для поступающих в вузы >> страница 4
6"> , где комбинация знаков берется любая, но одинаковая для числителя и знаменателя.


1.1. Вокруг правильного треугольника ABC описана окружность O радиусом R. Окружность O1 касается двух сторон AB и BC треугольника и окружности O. Найдите расстояние от центра окружности О1 до вершины А.

1.2. Высота равнобедренного треугольника с углом α при основании больше радиуса вписанного в него круга на m. Определите основание треугольника и радиус описанной окружности.

1.3. Докажите, что радиус окружности, делящей пополам стороны треугольника, вдвое меньше радиуса окружности, описанной около этого треугольника.

1.4. В треугольнике соединены основания биссектрис. Найдите отношение площади данного треугольника к площади образовавшегося треугольника, если стороны данного треугольника относятся как p : q : l.

1.5. Даны углы A, B, C треугольника ABC. Пусть окружность касается сторон BC, AC и AB треугольника соответственно в точках A1, B1, C1. Найдите отношение площади треугольника A1B1C1 к площади треугольника ABC.

1.6. Дан треугольник ABC, углы B и C которого относятся как 3 : 1, а биссектриса угла А делит площадь треугольника в отношении 2 : 1. Найдите углы треугольника.

1.7. Найдите длину l биссектрисы внешнего угла А треугольника, если даны его стороны b и c и угол А между ними (b ≠ c).

1.8. В треугольнике площади S, с острым углом α при вершине А биссектриса угла А в p раз меньше радиуса описанного и в q раз больше радиуса вписанного круга. Найдите сторону треугольника, лежащую против угла А.

1.9. В треугольнике ABC проведены биссектрисы AM и BN. Пусть O — точка их пересечения. Известно, что

AO : OM = √3 : 1, а BO : ON = 1 : (√3 − 1).

Найдите углы треугольника.

1.10. Внутри угла а взята точка M. Ее проекции P и Q  на стороны угла удалены от вершины O угла на расстояния OP = p и OQ = q. Найдите расстояния MP и MQ от точки M до сторон угла.

1.11. В остроугольном треугольнике две высоты равны 3 и 2√2 см, а их точка пересечения делит третью высоту в отношении 5 : 1, считая от вершины треугольника. Найдите площадь треугольника.

1.12. В треугольнике ABC разность углов B и C равна π/2. Определите угол C, если известно, что сумма сторон b и c равна k, а высота, опущенная из вершины A, равна h.

1.13. В треугольнике ABC имеется точка O, такая, что углы ABO, ВСО и CAO равны α. Выразите ctg α через площадь треугольника и его стороны.

1.14. В треугольнике ABC дана разность φ углов A и В (φ = A − В > 0). Известно, что высота, опущенная из С на AB, равна BC − AC. Найдите углы треугольника.

1.15. Даны длины высот AA1 = ha и ВВ1 = hb треугольника ABC и длина CD = l биссектрисы угла С. Найдите угол С.

1.16. В треугольник с основанием а и противоположным углом α вписана окружность Через центр этой окружности и концы основания треугольника проведена вторая окружность Найдите ее радиус.

1.17. Докажите, что если длины сторон треугольника образуют арифметическую прогрессию, то центр окружности, вписанной в этот треугольник, и точка пересечения его медиан лежат на прямой, параллельной средней по длине стороне треугольника.

1.18. В треугольнике ABC радиус вписанной окружности равен r, сторона BC больше r в k раз, а высота, опущенная на эту сторону, больше r в 4 раза. Найдите полупериметр p, tg A/2 и стороны b и c.

1.19. Углы С, A, В треугольника ABC образуют геометрическую прогрессию со знаменателем 2. Пусть O — центр окружности, вписанной в треугольник ABC, K — центр вневписанной окружности, касающейся стороны AC, L — центр вневписанной окружности, касающейся стороны BC. Докажите, что треугольники ABC и OKL подобны.

1.20. В треугольнике ABC углы A, В и С образуют геометрическую прогрессию со знаменателем 2. Докажите, что

Сборник задач по математике с решениями для поступающих в вузы. Иллюстрация № 7 1.21. Докажите, что если P, Q, R — соответственно точки пересечения каждой из сторон BC, CA, AB (или их продолжений) треугольника ABC с некоторой прямой, то

Сборник задач по математике с решениями для поступающих в вузы. Иллюстрация № 8 (теорема Менелая).

1.22. Точка D находится на стороне BC треугольника ABC. Докажите, что

AB² · DC + AC² · BD − AD² · BC = BC · DC · BD

(теорема Стюарта).

1.23. На сторонах треугольника ABC взяты точки P, Q и R так, что три прямые AP, BQ и CR пересекаются в одной точке. Докажите, что

Сборник задач по математике с решениями для поступающих в вузы. Иллюстрация № 9 (теорема Чевы).

1.24. Через произвольную точку O, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные соответственно AB, AC, BC, причем F и M лежат на AB, E и K — на BC, N и D — на AC. Докажите, что

Сборник задач по математике с решениями для поступающих в вузы. Иллюстрация № 10 1.25. Через центр O правильного треугольника ABC проведена произвольная прямая. Докажите, что сумма квадратов расстояний от вершин треугольника до этой прямой не зависит от выбора прямой.

1.26. Вокруг треугольника ABC, в котором а = 2, b = 3 и угол C = 60°, описана окружность. Определите радиусы окружностей, проходящих через две вершины треугольника и центр описанной окружности.

1.27. Стороны треугольника связаны соотношением а² = c(b + с). Докажите, что угол A вдвое больше угла C.

1.28. Пусть O — центр окружности, вписанной в треугольник ABC. Докажите, что если OA² = OB · OC, то

Сборник задач по математике с решениями для поступающих в вузы. Иллюстрация № 11 1.29. Площадь , треугольника ABC удовлетворяет соотношению S = а² − (b − с)². Найдите угол A.

1.30. На сторонах треугольника внешним образом построены квадраты. Докажите, что расстояние между центрами квадратов, построенных на боковых сторонах, равно расстоянию от центра квадрата, построенного на основании, до противоположной вершины треугольника.

1.31. В треугольнике ABC единичной площади проведен отрезок AD, пересекающий медиану CF в точке M, причем FM = ¼CF. Найдите площадь треугольника ABD.

1.32. Докажите, что произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон (теорема Птолемея).

1.33. Отрезок, соединяющий середины оснований трапеции, равен их полуразности. Найдите сумму углов при большем основании трапеции.

1.34. Через центр квадрата ABCD проведена прямая, пересекающая сторону AB в точке N, причем AN : NB = 1 : 2. На этой прямой взята произвольная точка M, лежащая внутри квадрата. Докажите, что расстояния от точки M до сторон квадрата AB, AD, BC и CD, взятые в названном порядке, образуют